19.06.2022

Регулярная матрица Адамара


Регулярная матрица Адамара — это матрица Адамара, у которой суммы по строкам и столбцам равны. В то время как порядок матрицы Адамара должен быть 1, 2 или кратен 4, регулярные матрицы Адамара удовлетворяют дальнейшим ограничениям, что порядок равен полному квадрату. Избыток, обозначаемый E(H), матрицы Адамара H порядка n определяется как сумма элементов матрицы H. Избыток удовлетворяет ограничению | E ( H ) | ⩽ n 3 2 {displaystyle |E(H)|leqslant n^{ frac {3}{2}}} . Матрица Адамара достигает этой границы тогда и только тогда, когда она регулярна.

Параметры

Если n = 4 u 2 {displaystyle n=4u^{2}} является порядком регулярной матрицы Адамара, то её избыток равен ± 8 u 3 {displaystyle pm 8u^{3}} , а суммы строк и столбцов равны ± 2 u {displaystyle pm 2u} . Отсюда следует, что каждая строка имеет 2 u 2 ± u {displaystyle 2u^{2}pm u} положительных элементов и 2 u 2 ∓ u {displaystyle 2u^{2}mp u} отрицательных. Из ортогональности строк следует, что любые две различные строки имеют в точности u 2 ± u {displaystyle u^{2}pm u} общих положительных элемента. Если H интерпретировать как матрицу инцидентности блок-дизайна, когда 1 представляет смежность, а −1 представляет неинцидентность, то матрица H соответствует симметричному 2 − ( v , k , λ ) {displaystyle 2-(v,k,lambda )} дизайну с параметрами ( 4 u 2 , 2 u 2 ± u , u 2 ± u ) {displaystyle (4u^{2},2u^{2}pm u,u^{2}pm u)} . Дизайн с этими параметрами называется дизайном Менона.

Построение

Известно несколько методов построения регулярных матриц Адамара и было проведено несколько исчерпывающих компьютерных поисков для регулярных матриц Адамара с определёнными группами симметрии, но не известно, каждый ли полный чётный квадрат есть порядок регулярной матрицы Адамара. Матрицы Адамара типа Буша являются регулярными матрицами Адамара специального вида и связаны с конечными проективными плоскостями.

История и наименование

Подобно более общим матрицам Адамара, регулярные матрицы Адамара названы именем Жака Адамара. Дизайн Менона назван именем индийского математика П. Кишава Менона, а матрицы Адамара типа Буша названы именем Кеннета А. Буша.


Похожие новости:

Матрица смежности

Матрица смежности
Матрица смежности — один из способов представления графа в виде матрицы. Определение Матрица смежности графа G {displaystyle G} с конечным числом вершин

Матрица Кирхгофа

Матрица Кирхгофа
Матрица Кирхгофа — одно из представлений конечного графа с помощью матрицы. Матрица Кирхгофа представляет дискретный оператор Лапласа для графа. Она используется для подсчета остовных деревьев

Бикластеризация

Бикластеризация
Бикластеризация, блоковая кластеризация , сокластеризация, также двухмодальная кластеризация — методика data mining, которая позволяет одновременную кластеризацию строк и столбцов матрицы. Термин

Спектральная теория графов

Спектральная теория графов
Спектральная теория графов — направление в теории графов, изучающее свойства графов, характеристических многочленов, собственных векторов и собственных значений матриц, связанных с графом, таких, как
Комментариев пока еще нет. Вы можете стать первым!

Добавить комментарий!

Ваше Имя:
Ваш E-Mail:
Введите два слова, показанных на изображении: *
Популярные новости
Учимся петь высокие ноты: как быстро достичь успеха?
Учимся петь высокие ноты: как быстро достичь успеха?
У многих, кто старается научиться петь, возникают сложности в процессе пения высоких нот. Иногда...
Какую выгоду предусматривает строительство дома под ключ?
Какую выгоду предусматривает строительство дома под ключ?
Чтобы получить долговечное и надежное жилье, коммерческое или промышленное помещение, мало одного...
Гидравлическая тележка с подъемной платформой – конструкция, применение
Гидравлическая тележка с подъемной платформой – конструкция, применение
Тележки гидравлического типа – это золотая середина между доступными в ценовом плане механическими...
Все новости