05.04.2021

Усилитель Лина


Усилитель Лина — первая практически работоспособная схема бестрансформаторного транзисторного усилителя мощности звуковой частоты (УМЗЧ). Разработан Хун-Чан Лином в 1956 году, массово применялся в серийных УМЗЧ 1960-х и первой половины 1970-х годов. В начале 1970-х годов конструкторы развили базовую схему Лина до так называемого модифицированного усилителя Лина — трёхкаскадного усилителя с дифференциальным входным каскадом и комплементарным двухтактным выходным каскадом. Во всех вариантах усилителя Лина усиление напряжения возложено на единственный биполярный транзистор, работающий в режиме c общим эмиттером, при этом опорным («нулевым») уровнем этого каскада служит одна из шин питания.

Модифицированный усилитель Лина, фактически являющийся высоколинейным операционным усилителем (ОУ), абсолютно доминировал в схемотехнике дискретных и интегральных УМЗЧ и классических интегральных ОУ последней четверти XX века и начала XXI века. В схемотехнике интегральных УМЗЧ малой мощности по-прежнему используются и варианты базовой схемы Лина.

Изобретение Лина

Транзисторные усилители мощности 1950-х годов строились по унаследованной из ламповой схемотехники симметричной (пушпульной) двухтактной схеме с двумя трансформаторами (входным и выходным). Эти усилители, развивавшие выходную мощность порядка нескольких сотен мВт, имели высокий коэффициент полезного действия (что обусловило их применение в переносных радиоприёмниках и слуховых аппаратах) при неустранимо высоких нелинейных искажениях. Высокий уровень коммутационных искажений был предопределён работой в режиме AB с малыми токами покоя. Снизить его, охватив усилитель петлёй отрицательной обратной связи, было практически невозможно из-за частотных и фазовых искажений в двух последовательно включённых трансформаторах.

Для того, чтобы охваченный обратной связью усилитель был устойчивым, требовалось исключить из схемы как минимум один из двух трансформаторов. Функции согласования импедансов и расщепления фаз управляющего сигнала, которые в классической схеме исполняли трансформаторы, следовало возложить на транзисторы. Дополнительную сложность представлял ограниченный ассортимент тогдашних, исключительно германиевых транзисторов: в слаботочных каскадах конструкторы могли использовать транзисторы и pnp-, и npn-структуры (пока ещё не комплементарные), в мощных — только pnp-транзисторы. Решение задачи — первая практически работоспособная схема бестрансформаторного транзисторного УМЗЧ — было найдено разработчиком компании RCA Хун-Чан Лином и опубликовано в сентябрьском номере журнала Electronics за 1956 год.

В классическом авторском варианте Лина — всего два каскада. Всё усиление напряжения сосредоточено в первом каскаде на транзисторе V1 (в схемотехнике УМЗЧ называемом каскадом усиления напряжения, КУН). Выходной каскад Лина — квазикомплементарный двухтактный эмиттерный повторитель, в верхнем плече которого включён составной транзистор на паре Дарлингтона, а в нижнем — составной транзистор на паре Шиклаи. Термостабилизация выходного каскада возложена на термистор VT. Усилитель охвачен тремя петлями обратной связи: вольтодобавка на конденсаторе С3 стабилизирует режим работы V1, петля ООС R8C5 в сочетании с выходным сопротивлением источника сигнала задаёт коэффициент усиления, делитель R1R2 стабилизирует напряжение средней точки эмиттерного повторителя и также участвует в задании коэффициента усиления. С указанными Лином компонентами усилитель способен отдать в нагрузку сопротивлением 16 Ом выходную мощность 6 Вт. Коэффициент нелинейных искажений на частоте 400 Гц достигает 1 % — слишком много по меркам ламповой аппаратуры, но существенно меньше КНИ пушпульных транзисторных схем.

Асимметрия вольт-амперных характеристик пар Дарлингтона и Шиклаи на кремниевых транзисторах

Простая, элегантная и при этом хитроумная схема Лина имела много недостатков. Выходной каскад был связан с нагрузкой через разделительный электролитический конденсатор, вносивший в усиленный сигнал заметные искажения. Входной каскад предполагал подключение к источнику сигнала с определённым — не большим, но и не малым — внутренним сопротивлением, фактически работавшим в режиме генератора тока. Первое можно было преодолеть, перейдя с однополярного питания на двухполярное, второе — включением на вход усилителя Лина дополнительного согласующего каскада. Намного серьёзнее была проблема теплового дрейфа выходного каскада: именно из-за неё массовое внедрение усилителя Лина началось лишь в середине 1960-х годов, когда на рынке появились кремниевые транзисторы. Усилители, построенные на новейшей элементной базе, были достаточно надёжны, экономичны, не требовали наладки — но неблагозвучны. Асимметрия пар Дарлингтона и Шиклаи, малозаметная в каскадах на германиевых транзисторах, с переходом на кремниевые транзисторы оказалась недопустимо велика. Конструкторы 1960-х годов, воспитанные в рамках ламповой схемотехники, были не готовы и не способны решить эту проблему; простейшее и наилучшее решение — использование комплементарных выходных транзисторов — было пока невозможно. Мощные кремниевые транзисторы тех лет были доступны только в npn-структуре; мощные кремниевые pnp-транзисторы появились лишь в начале 1970-х годов, а комплементарные, симметричные пары npn- и pnp-транзисторов — ещё позже.

Несмотря на недостатки, схема Лина оказалась чрезвычайно долговечной. Последовательные, пошаговые усовершенствования её узлов и связей между ними продолжались десятилетиями; в начале 1970-х годов схема мутировала в модифицированный усилитель Лина, абсолютно доминировавший в схемотехнике УМЗЧ последней четверти XX века, а затем и эта схема подверглась множеству больших и малых доработок. Главная причина успеха схемы кроется в непосредственной связи каскада усиления напряжения и выходного каскада. Усилитель Лина легко трансформируется в полноценный усилитель постоянного тока (УПТ) — для этого достаточно устранить выходной разделительный конденсатор и дополнить схему входным дифференциальным каскадом. Низкоомное соединение баз и эмиттеров выходных транзисторов гарантирует щадящий режим работы даже при значительных обратных токах коллекторов (что было критично для несовершенных транзисторов 1960-х и 1970-х годов); верхний и нижний силовые транзисторы попеременно надёжно запираются. Ни одно из этих достоинств, само по себе, не уникально для схемы Лина, но Лин сумел первым свести их воедино в простой, пригодной для массового выпуска и дальнейших усовершенствований конструкции.

Эволюция схемы

Последовательные усовершенствования схемы Лина в 1965-1972 годы

Исходная схема Лина (упрощённо) Стабилизация температуры диодными или транзисторными датчиками Генератор стабильного тока в нагрузке КУН Биполярное питание Дифференциальный входной каскад Комплементарный выходной каскад

Череда усовершенствований базовой схемы началась не позднее 1961 года, когда британцы Тоби и Динсдейл опубликовали собственную версию усилителя Лина. В этом, трёхкаскадном варианте, схему дополнил входной каскад, согласующий низкое входное сопротивление КУН c выходным сопротивлением источника сигнала. Термистор, регулировавший ток покоя выходных транзисторов, был заменён германиевым диодом; в остальном КУН и выходной каскад остались неизменными. В конце 1960-х датчики на кремниевых диодах стали стандартным оснащением УМЗЧ, и примерно тогда же появились первые транзисторные датчики — умножители напряжения база-эмиттер. К концу 1970-х годов транзисторные датчики вытеснили диодные.

В начале 1970-х годов конструкторы УМЗЧ освоили применение транзисторных генераторов стабильного тока (ГСТ), до того использовавшихся лишь в аналоговых интегральных схемах. Замена нагрузочных резисторов КУН (R3, R4 в схеме Лина) на активный ГСТ позволила снизить рабочий ток КУН (в схеме Лина он был вынужденно высоким), увеличить его коэффициент усиления до практического максимума (в 1970-е годы составлявшего примерно 1000…3000) и отказаться от вольтобавки. Исключение конденсатора вольтодобавки С3 устранило потенциальный источник искажений и приблизило схему к идеалу — усилителю постоянного тока.

Примерно тогда же, по мере удешевления компонентов блоков питания, произошёл переход с однополярного питания УМЗЧ на двуполярное; с исключением из схемы разделительного конденсатора С4 она превратилась в полноценный УПТ. В новой конфигурации условный «нуль» (потенциал эмиттера) входной цепи КУН более не совпадал с общим проводом — теперь он был привязан к подверженной всевозможным помехам шине питания (обычно отрицательной). Задача согласования опорных уровней и фильтрации помех на практике оказалась несложной: вначале её решали с помощью входного каскада на одиночном транзисторе, а на рубеже 1960-х и 1970-х годов конструкторы впервые применили дифференциальный входной каскад. По странному стечению обстоятельств дифференциальный каскад, применявшийся в ламповых вычислительных машинах и промышленной автоматике с 1940-х годов, не использовался конструкторами звуковой аппаратуры до середины 1960-х годов, когда инженеры RCA популяризовали его применение в схемах на новейших кремниевых транзисторах. Превосходство дифференциального каскада над предшествовавшими ему схемами было столь велико, что уже в первую половину 1970-х годов он вытеснил их и стал непременным, безальтернативным компонентом транзисторных УМЗЧ.

Параллельно конструкторы — по-прежнему связанные необходимостью использовать транзисторы одной полярности — искали способы линеаризовать от природы нелинейный, асимметричный выходной каскад схемы Лина. Асимметрию можно было свести к минимуму использованием комплементарных пар мощных транзисторов. Первые практические схемы на таких парах разработали в 1967—1968 годы Барт Локанти и Артур Бейли, но необходимые для них pnp-транзисторы были пока дороги и ненадёжны. Конструкторы вынужденно продолжили совершенствование схемы, использовавшей лишь npn-транзисторы. В 1969 году на свет появились три альтернативные схемы, в которых асимметрия пар Дарлингтона и Шиклаи отчасти компенсировалась диодом, добавленным в пару Шиклаи; в том же году начался выпуск усилителей на «тройках Quad» — трёхступенчатых составных транзисторах.

Полностью подавить искажения, порождавшие «транзисторный звук», эти полумеры не могли; радикальным решением, в принципе исключавшим появление коммутационных искажений, был перевод выходного каскада в чистый режим А. По этому пути пошла британская компания Sugden и многочисленные любители-самодельщики, но для массового производства транзисторные усилители в режиме A были запретительно дороги. Вскоре промышленность освоила выпуск недорогих и надёжных кремниевых транзисторов pnp-структуры, в практику вошли полностью комплементарные выходные каскады, и проблема асимметрии ушла в прошлое. Так, не позднее 1972 года, сложилась структурная схема трёхкаскадного модифицированного усилителя Лина.

Комментарии

  • ↑ В русскоязычной литературе понятие «пушпул» (заимствованное англ. push-pull) нередко обобщается до всякой двухтактной схемы. В контексте ламповой и ранней транзисторной схемотехники оно, однако, имеет узкий смысл: пушпул — симметричная схема, плечи которой включены параллельно по постоянному току, а возбуждающие сигналы — противофазны. Сложение выходных токов осуществляется, как правило, выходным трансформатором.

  • Похожие новости:

    Динамическое изменение напряжения

    Динамическое изменение напряжения
    Динамическое изменение напряжения (англ. Dynamic Voltage Scaling, DVS) — технология, позволяющая уменьшать энергопотребление (а также перегрев) компьютерной системы в зависимости от её загрузки путём

    Динамические искажения

    Динамические искажения
    Динамические искажения (TIM - Transient Intermodulation) - искажения сигнала в усилителе проявляющиеся при резком изменении входного сигнала и из-за недостаточной скорости нарастания сигнала в

    Лин

    Лин
    Лин (др.-греч. Λῖνος), в древнегреческой мифологии имя нескольких персонажей, близких по характеру. По лексикону Фотия, их три: (1) сын Каллиопы, (2) сын Аполлона и Алкионы, (3) сын Псамафы и

    Способы измерения артериального давления у крыс

    Способы измерения артериального давления у крыс
    Для регистрации артериального давления у крыс и мышей используют кимографический метод с применением пневматического усилителя, разделенного металлической мембраной на 2 части, одна из которых
    Комментариев пока еще нет. Вы можете стать первым!

    Добавить комментарий!

    Ваше Имя:
    Ваш E-Mail:
    Введите два слова, показанных на изображении: *
    Популярные новости
    Как не ошибиться с выбором грузового лифта?
    Как не ошибиться с выбором грузового лифта?
    Грузовые лифты нашли широкое применение практически во всех сферах деятельности человека. В...
    Как не ошибиться с выбором остекления для лоджии?
    Как не ошибиться с выбором остекления для лоджии?
    По поводу подбора остекления для лоджии всегда ходило много споров, особенно, когда речь заходит о...
    Какие плюсы имеет светодиодное освещение?
    Какие плюсы имеет светодиодное освещение?
    Оборот традиционных ламп накаливания постоянно сокращается, так как забота о повышении...
    Все новости